Effect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance

نویسندگان

  • A. Benvidi Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
  • A. Dehghani Firouzabadi Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
  • B. B Fatemeh Mirjalili Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
  • R. Zare Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran
چکیده مقاله:

New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and 0.05 M I2 in a mixture of acetonitrile and valeronitrile (volume ratio, 85:15) enhanced significantly photocurrent density from 11.1 to 12.8 mA/cm2, and voltage increased from 0.66 to 0.68 V. As a result, overall conversion efficiency increased from 4.4% to 4.8%, corresponding to increment of 10.9%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

effect of hydroquinone dderivatives in electrolytes on dye-sensitized solar cell performance

new kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. addition of 0.05 m a hydroquinone derivative in the electrolyte comprising 0.5 m 1-methyl-3-propylimidazolium iodide (mpii) and...

متن کامل

Effects of Sensitization with Natural Pigments on the Performance of Dye-sensitized Solar Cell (DSSC)

Three natural pigments including wild iris, black pomegranate bark and black grapes were used as sensitizer in dye sensitized solar cells (DSSCs) based on TiO2 nanoparticles. The results showed that the DSSC made of black pomegranate bark was more efficient than the other cells due to its strong bonding with TiO2 nanoparticles. Longer electron lifetime, lower electron recombination, and lower...

متن کامل

Dye-Sensitized Solar Cells Based on Polymer Electrolytes

Dye-sensitized solar cells (DSSCs) using organic liquid electrolytes have received significant attention because of their low production cost, simple structure and high power conversion efficiency [1-5]. Recently, the power conversion efficiencies of DSSCs using Ruthenium complex dyes, liquid electrolytes, and Pt counter electrode have reached 10.4 % (100 mW/cm2, AM 1.5) by Grätzel group [6]. H...

متن کامل

Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell

The dye-sensitized solar cells (DSSC) have been regarded as one of the most promising new generation solar cells. Tremendous research efforts have been invested to improve the efficiency of solar energy conversion which is generally determined by the light harvesting efficiency, electron injection efficiency and undesirable electron lifetime. In this review, various characteristics of dye-...

متن کامل

Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in tu...

متن کامل

Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devic...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 1

صفحات  37- 44

تاریخ انتشار 2014-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023